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ABSTRACT
Engagement is a human experience relevant in multiple contexts, in-
cluding classrooms, presentations and workplaces. Stemming from
flow theory, engagement in these contexts has been studied using
wearable devices, which can unobtrusively measure physiological
changes, specifically Electrodermal Activity (EDA). However, re-
searchers have not explored how EDA markers might be similar or
different between various engagement scenarios, namely student,
audience and workplace engagement. In this study, we investigated
possible similarities through the use of three datasets containing
EDA data and engagement self-report labels, collected in the wild in
different settings using research-grade wrist-wornwearable devices.
We analysed the correlation between hand-crafted EDA features
and the engagement level and we leveraged a machine learning
framework for engagement prediction. We found that similar fea-
tures are correlated with the engagement level across the various
settings. We also found that our machine learning model identified
related markers as important across the three engagement contexts.
Our results highlight that similarities are present in the EDA fea-
tures between different engagement contexts, while also identifying
possible dataset specific differences.
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1 INTRODUCTION
Engagement, a multifaceted construct, is a human experience that
can be found in various domains, including education, the work-
place, and interpersonal communication. While engagement is de-
fined differently in various domains, all concepts can find their
roots in "flow" [12], a state of absorption, concentration and plea-
sure derived from compelling activities [44].

It is possible to leverage unobtrusive engagement tracking across
various contexts: to improve academic achievements through tar-
geted teaching [10, 19], to enhance workers’ productivity and satis-
faction by facilitating "flow" state experiences [32], and to refine
professional performances and identify compatible audiences by
gauging their engagement [46].

Recent development of wearable technology created new possi-
bilities to perform engagement monitoring. Unobtrusive sensing
of engagement levels has already been explored in education [16,
33, 48], workplace [14, 30, 39, 40], and audience-presenter con-
texts [22, 26, 38, 47], using distinct devices and physiological mark-
ers. Electrodermal Activity (EDA), due to its intimate association
with autonomic nervous system responses [6], has been adopted
as marker for the detection of flow and engagement in the various
contexts aforementioned [14, 16, 22, 27].

All types of engagement mentioned, can find their roots in flow
theory [3, 12]. Student engagement is defined by flow constructs [9,
10, 36, 42, 43]; audience engagement is linked to how our mind’s
"flow" during social interactions [11, 23, 25, 45]; and workplace
engagement is usually defined directly as "flow" [4, 18]. However,
these similarities have not yet been explored using wearable devices.

As such, our study made a novel contribution by comparing
different engagement contexts, audience, workplace and student
engagement, under a unified methodological framework. We inves-
tigated whether there are common EDA indicators of engagement
by considering three distinct datasets, all containing EDA data from
wearable devices and engagement self-reports in different contexts.
To this end, we developed both a correlation and a machine learn-
ing framework to analyse how physiological markers interact with
individuals’ engagement level. We then tested our models’ gen-
eralizability and adaptability in predicting engagement using six
validation paradigms. The code used for this study is open sourced
at: https://github.com/LeonardoAlchieri/EngagementPredictions.
All three datasets are available to other researchers upon signing a
data sharing agreement.
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2 RELATEDWORK
Di Lascio et al. [14] implemented a deep learning-based approach to
recognize flow level in the workplace. Through Blood Volume Pulse
(BVP) and EDA data collected from Empatica E4 devices in the wild,
they managed to obtain a balanced accuracy of 70%. Instead, Rissler
et al. [39] used, for a similar task, only EDA data frommedical grade
devices, in a lab setting, and a Support Vector Machine classifier [5],
achieving 70% accuracy. Similarly, Rissler et al. [40] used Heart Rate
Variability (HRV) data collected from chest-worn wearable devices
and a Random Forest classifier, obtaining an accuracy of 70% from
both in the wild and controlled conditions.

Di Lascio et al. [16] used EDA hand-crafted features and a ma-
chine learning classifier to predict students’ emotional engagement
during lectures, achieving a recall of 80%. Other studies [21, 33, 48]
have investigated the connection between EDA markers and en-
gagement during lectures.

Gashi et al. [22] showed aDynamic TimeWarping (DTW)method
to recognize when the engagement level of an audience and a pre-
senter is synchronized. Also, Röggla et al. [41] used a real-time
EDA-based system to gauge audience engagement as part of an
art installation. Similarly, Wang et al. [49] mapped audience’s EDA
signals and identified minute-per-minute engagement correlations.

There is a lack of work in analysing engagement across different
settings and finding common patterns and markers, specifically
from EDA data collected from wearable devices. As such, in this
work we try to bridge this gap through the use of correlation anal-
ysis and a machine learning framework.

3 METHOD
3.1 Engagement Datasets
We use three distinct datasets, all obtained using wrist-worn Empat-
ica E4 devices1 for unobtrusive, continuous collection of EDA data.
These datasets focus on different engagement contexts, i.e., student,
workplace, and audience, collected through the use of different
self-report questionnaires.

The SEED dataset [16] contains physiological data from 24 par-
ticipants collected during nine lectures. Engagement self-reports,
based on the "University Student Engagement Inventory" (USEI)
questionnaire [31], were administered twice per lecture, yielding a
computed score in [1, 5] (floating-point). TheAPSYNC dataset [22]
contains physiological data from 10 audience members across mul-
tiple presentations. A self-report questionnaire derived from Hassib
et al. [26] gathered engagement data on a 7-point Likert scale. The
Workplace dataset [14, 15] includes data from 14 academic work-
ers performing various tasks over 28 days. Using the modified
"Work-Related Flow Inventory" (WOLF) questionnaire [3, 13], ad-
ministered after each work activity, the authors computed a flow
score in [1, 5].

3.2 Dataset Pre-processing
We filtered the signals utilizing a first-order Butterworth filter with
a 0.4 Hz cutoff frequency, as [17]. Then, we decomposed the EDA
signal into its tonic and phasic components [6], using the cvxEDA
method [24]. We shall refer to these components as "phasic-EDA"

1https://www.empatica.com/en-gb/research/e4/

Table 1: Overview of hand-crafted EDA features extracted
from 10-seconds segments, for all three engagement datasets.

Feature type Feature list
time-domain min, max, mean, std, dynamic range, slope,

absolute slope, mean first derivative, std first
derivative, number of peaks, peaks amplitude

wavelet-based mean 1 Hz wavelet, std 1 Hz wavelet, mean
means 2 Hz wavelet, std 2 Hz wavelet, mean

4 Hz wavelet, std 4 Hz wavelet
skin response rise time, decay time

and "tonic-EDA", while to the non-decomponsed signal as "mixed-
EDA".

Following [15, 16, 22], we binarized the engagement labels into
"low" and "high engagement". In the SEED and Workplace datasets,
with a label scale of 1 to 5, we assigned "high engagement" for
values above 3, as [15, 16]; while for APSYNC, which uses a scale
of 1 to 10, the threshold was set to 5.

We then segmented each EDA component into non-overlapping
windows of 10 seconds, following [16], for all three datasets. To
each segmented window, the corresponding engagement label ("low
engagement"/"high engagement") was assigned. We extracted a
total of 13’985 windows for SEED, 1’951 for APSYNC and 41’890 for
Workplace. The distribution of engagement labels is approximately
55% "low engagement" and 45% "high engagement" for all three
datasets: no rebalancing was performed.

On each 10-second window, we then extracted 19 hand-crafted
features per component (phasic, tonic and mixed-EDA), for a total
of 57: 11 time-domain features, as [17], 6 wavelet-based features,
as in [14], and 2 features that characterize the skin conductance
response (SCR) [6]. In Table 1 we show an overview.

3.3 Feature Correlation with Engagement
We sought common patterns among the datasets via a correlation
analysis between engagement labels and extracted features. The
goal was to identify features potentially correlated with the engage-
ment level across datasets. For this purpose, we utilized Spearman’s
rank correlation coefficient, measuring non-linear dependencies
between the extracted features and engagement labels [29].

3.4 Machine Learning Classifiers
We employed 27 Machine Learning (ML) models to classifying the
engagement level in the three contexts. With a similar methodology
to [14, 16], each model took as input a set of hand-crafted EDA
features, corresponding to a 10-second window, and then made a
binary prediction: "low" or "high engagement".

We report only the results obtained by the Random Forest clas-
sifier [2], which achieved the highest balanced accuracy in most
of our experiments, and was one of the best classifiers in simi-
lar studies [14, 16]. We used a Random Biased Guess predictor as
baseline, which classifies engagement labels following the data dis-
tribution. All models were implemented in Python using the Scikit-
Learning [37] and LazyPredict (https://github.com/shankarpandala/
lazypredict) libraries.

https://www.empatica.com/en-gb/research/e4/
https://github.com/shankarpandala/lazypredict
https://github.com/shankarpandala/lazypredict
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Figure 1: Spearman’s 𝜌 , across the three datasets. The fea-
ture represented are the top-2 highest correlated feature per
dataset and per EDA component. Less than 6 points per com-
parisonmight be present, if two datasets share same features.

3.5 Machine Learning Evaluation Procedures
We employed various evaluation procedures on our machine learn-
ing task, to simulate real-world applicability, e.g., same user during
the same day, unseen users or new days. We also tested how the
models performed when trained on each dataset independently
("single-dataset training"), and using data from multiple datasets
together ("multi-dataset training").

We used classic 5-fold cross-validation to understand the mod-
els’ ability to handle intra-user, intra-day data. Although it might
not reflect real-world use, it still showcases the models’ capabili-
ties. We also used a modified version of 5-fold cross-validation,
following [14], where for each user, data from the same day was
not concurrently present in both training and testing sets. Since
the Workplace dataset has more data than the other two, for these
validations we only used the "single-dataset training" paradigm.

We also leveraged Leave Out Participant Out (LOPO) and
Leave One Session Out (LOSO) cross validation, to simulate test-
ing on unseen users or days respectively. We also performed a
personalized LOSO validation, where unique ML models were
trained for each participant, providing insight into the influence of
individual users’ data. These three validations were run on both
"single-dataset" and "multi-dataset training" paradigms.

To explore adaptability across engagement scenarios, we per-
formed Leave-One-Dataset-Out (LODO) cross-validation, on the
"multi-dataset training" paradigm only. This involved training the
models on two datasets, while the third one was left out for testing.

Each procedure was computed with multiple seeds to account
for stochastic phenomena, i.e., higher or lower performance due to
initialization of the classifier or fold selection. We used balanced
accuracy [8] as the evaluation metric, as [14], reported as average
across all runs, with standard error.

3.6 Feature Importance Analysis
To assess if the three scenarios leveraged similar or different EDA
features for engagement prediciton, we trained a Random Forest
classifier using, for each dataset independently, all of the available
data points. From it, we extracted the impurity-based feature im-
portance [34]. We used this method since it highlights key features
directly from the traine model. This allows for direct comparison

of influential variables within each unique scenario. Future work
could focus on other explainable methods, e.g., permutation impor-
tance [7], partial dependence plots or Shapley values [35].

4 RESULTS
4.1 Feature Correlation with Engagement
Figure 1 shows the engagement correlation, across EDA compo-
nents. On the y-axis, we arrange EDA parts and datasets. The x-axis
shows the correlation value. Each point shows how closely a feature
relates to engagement level. We present the two most impactful
features for each EDA part per dataset. The results show that cor-
relation is similar, for the same feature, across scenario. For the
Workplace dataset, features have negative correlation where the
other two have positive correlation. Overall, all of our results are
always lower, in absolute value, than 0.4, suggesting low correla-
tion [20, 29, 50] with the engagement level. This result suggests
that similar patterns might be present among the three contexts,
but the low correlation values highlight the need for further inspec-
tion. As such, first we trained some Machine Learning models and
then investigated which features were most relevant to predict the
engagement label, in the three distinct scenarios.

4.2 Engagement Classification Results
In Table 2 we present the balanced accuracy results, with standard
errors, for all of the validation paradigms, for both "single" and
"multi-dataset training".

For 5-fold cross validation, the Random Forest classifier reached
a balanced accuracy above 80% when trained independently on all
datasets, indicating successful engagement level recognition in all
three scenarios when user and day data is shared between train
and test sets. In Leave Out Participant Out (LOPO) cross valida-
tion, balanced accuracy surpasses the random baseline only with
independent training on the APSYNC dataset, implying that physio-
logical responses and perceived engagement levels can differ among
participants in similar situations.

In the Leave One Session Out (LOSO) cross validation, per-
formance for both "single" and "multi-dataset training" reaches
approximately 60% balanced accuracy, hinting at inter-day differ-
ences possibly impacting the generalizability of work and audience
engagement predictions. The personalized Leave One Session
Out approach aims to address this issue, with noticeable perfor-
mance enhancements observed across all contexts, even though
always lower than when performing 5-fold cross validation. In the
modified 5-fold cross validation, where data from the same day
is never shared between training and testing folds for each user,
performance is lower than the 5-fold cross validation but higher
than Personalized LOSO only on the APSYNC dataset, hinting that
mixing data from various users on different days in the training set
might affect classifier performance. Despite implementing differ-
ences in pre-processing, segmentation, and feature extraction, the
balanced accuracy on the Workplace dataset is around 60%, lower
than the results from Di Lascio et al. [14], which however lever-
aged other features. Finally, results for the Leave Out Dataset Out
(LODO) cross validation suggest that models trained on a different
engagement scenarios fail to generalize accurately to others, with
balanced accuracy for all datasets less than the random baseline.
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Table 2: Balanced accuracy in % (with standard error) for the different validation paradigms on the Random Forest classifier.
Results are presented for both "single-dataset" and "multi-dataset training". The hasterisk ∗ indicates results which satistically
have higher balanced accuracy than the Random Biased Guess baseline.

Validation Paradigm "Single-dataset training" "Multi-dataset training"
Workplace SEED APSYNC Workplace SEED APSYNC

5-fold 82.7(0.1)∗ 80.5(0.4)∗ 93.4(0.1)∗ / / /
LOPO 52.8(2.2) 44.7(5.1) 57.1(0.1)∗ 49.5(0.1) 42.6(0.2) 42.2(0.2)
LOSO 60.0(0.2)∗ 45.8(0.3) 57.4(0.2)∗ 57.2(0.2)∗ 41.5(0.2) 48.7(0.1)

Personalized LOSO 68.7(2.0)∗ 78.7(9.6) 58.1(10.1)∗ / / /
Modified 5-fold 59.7(0.2)∗ 47.6(0.6) 67.9(8.7)∗ / / /

LODO / / / 40.5(0.1) 42.4(0.2) 42.9(0.6)

0.0 0.1 0.2 0.3
Feature Importance

Classroom

Audience

Workplace

Da
tas

et

Feature Name
minimum (mixed-EDA)
maximum (phasic-EDA)
maximum (mixed-EDA)
mean (tonic-EDA)

Figure 2: Displayed is the Feature Importance of the top-2
features per dataset based, when the Random Forest classi-
fier is trained independently on three datasets. Shared top-2
features across datasets are reported only once, resulting in
fewer than six unique features.

In conclusion, our validation paradigms suggest that over 80%
balanced accuracy in engagement prediction is achievable only
when same-day data from a single user is utilized for both training
and validation, potentially due to data leakage [28]. When predict-
ing on unseen points from an unknown user or day, the model’s
performance is often not different than the random baseline. We
also highlighted that, unlike other scenarios where wearable de-
vices are used, merging data from all three datasets doesn’t improve
engagement prediction [1, 51]. This is could be due to variations in
the definition of engagement in the three contexts, different EDA
signal markers or data imbalance, given the Workplace dataset’s
larger size compared to APSYNC and SEED (subsection 3.2).

4.3 Feature Importance
Figure 2 displays feature importance across three datasets, reveal-
ing similar significant features in each, despite some being dataset-
specific. Most relate to operations like minimum, maximum, or av-
erage across different EDA components ("phasic", "tonic", "mixed"),
indicating potential similarities across engagement tasks and the
reliance of engagement prediction on common markers with some
unique dataset variations.

5 CONCLUSIONS
In this work, we compared engagement across different contexts,
namely audience, student and workplace engagement. We used
Electrodermal Activity (EDA) datasets collected using Empatica
E4 devices and engagement self-reports for the three settings. We
performed the same pre-processing, decomposition, segmentation
and extraction of hand-crafted EDA features. We then correlated
the EDA features with the engagement level. Finally, we created
a machine learning pipeline to predict the engagement level of
individuals and to analyse which hand-crafted features might be
leveraged the most in the classification.

Our results highlight similarities between audience, student and
workplace engagement. We showed that the hand-crafted features
with highest correlation are similar across datasets, hinting to com-
mon physiological responses. To expand on this, our feature impor-
tance analysis found that similar features were also leveraged in
the three scenarios.

Further work is nonetheless necessary, especially to improve
engagement prediction. Future analysis should also investigate how
to leverage data from multiple contexts and analyse how features
intertwine with each other.

In conclusion, our work tried to bridge the gap in engagement
recognition knowledge by highlighting the presence of similarities
between various scenarios, i.e., audience, student and workplace
engagement, using correlation analysis and a machine learning
classification task. We pose the basis for further investigation into
how physiological signals fromwearable devicesmight be leveraged
across different engagement contexts.
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