2022UBICOMP

On the Impact of Lateralization in Physiological Signals from Wearable Sensors

7th International Workshop on Mental Health and Well-being: Sensing and Intervention

Leonardo Alchieri, Nouran Abdalazim, Lidia Alecci, Shkurta Gashi, Elena Di Lascio, Silvia Santini

Università della Svizzera Italiana (USI)

15 Sept 2022

n

Lateralization Impact **Justification & Approach**

EDA

Lateralization of physiological signals^[20, 22]

Wrist device position

Left vs Right analysis

Impact on ML model

Train and test on different sides

"Worst case" scenario

USILaughs^[6] **Setup**

Limited User Movements

Empatica E4©

- ElectroDermal Activity (EDA)
- Blood Volume Pulse (BVP)
- Skin Temperature (ST)
- Accelerometer (ACC)

)

USILaughs^[6] **Data Collection**

Relax

Show Videos Record Laughs

Clapping Hands

Fake Laugh

Cognitive Load

Multiple Events

USILaughs⁶ Data Cleaning & Preparation [1]

• 4Hz

- 64Hz
- 1st Butterworth low-pass (0.4 Hz)
- Phasic Component^[3, 9]
- Norm mixed
 EDA

 1st Butterworth
 Not used by [6]
 Avg 3-axis low-pass (5 Hz)

MIN-MAX NORM USER-WISE

• 4Hz

• 32Hz

Quantification of Lateralization

In the literature Lateralization of physiological signals

• Can differ! [10, 20, 22, 29]

Phasic

What to expect

[11, 23]

• Should not **differ** [5,6,7]

Correlation Event Correlation Results

Consistency!

Correlation coefficient per event (BVP)

Event

baseline -	0.71	0.74	0.57
clapping hands -	0.72	0.74	0.57
cognitive load -	0.71	0.74	0.57
fake laughter -	0.72	0.74	0.56
funny videos -	0.71	0.75	0.57
laughter episodes -	0.57	0.55	0.45

Event

Pearson's ρ Spearman's ρ Kendall's τ

Variations

Correlation coefficient per event (EDA phasic)

baseline -	0.14	0.34	0.24		
clapping hands -	0.23	0.33	0.24		
cognitive load -	0.094	0.45	0.33		
fake laughter -	0.17	0.47	0.35		
funny videos -	0.44	0.37	0.26		
laughter episodes -	0.6	0.47	0.35		
Pearson's ρ Spearman's ρ Kendall's τ					

Effect size Analysis of raw signals

LEFT features

Clapping Hands

Effect size of features

RIGHT features

Per-event

Cliff's δ

Fake Laugh

Cognitive Load

Effect size Cliff's δ Results

Event

Cliff Delta values (BVP) baseline - 0.098 -0.044 0.043 -0.187 -0.022 -0.169 0.013 clapping hands 0.122 -0.045 0.089 -0.256 -0.023 -0.109 0.089 cognitive load - 0.106 0.065 0.089 -0.137 0.008 -0.254 0.089 fake laughter - 0.019 - 0.028 - 0.006 - 0.141 - 0.079 - 0.143 - 0.006 funny videos- 0.04 -0.045 0.016 -0.137 0.063 -0.137 -0.026 laughter episodes 0.151 0.063 0.127 -0.154 0.043 0.059 0.004 hr mean slope std 111 Feature

ML Task

Idea **Real-world applications**

640 values (50/50)

Laughter vs Relaxation

ML training

ML Models Classical Machine Learning

- KNN
- SVM
- Gaussian Process Gaussian Naïve Bayes

Leave-One-Subject-Out Cross Validation

- Random Forest
- XGBoost

Accuracy

Training and testing Paradigms implemented

Worst case scenario

Train/test different sides!

Results Laughter Recognition ML

Side/Sensor	EDA	PPG	
Train Left, Test Left	59.0 ± 0.6	57.1 ± 0.6	
Train Right, Test Right	54.4 ± 0.7	54.7 ± 0.7	
Train Random, Test Random	49.2 ± 0.7	56.5 ± 0.6	
Train Left, Test Right	54.8 ± 0.6	53.0 ± 0.5	
Train Right, Test Left	58.7 ± 0.6	54.7 ± 0.5	
Random Baseline	50.9 ± 2.2		

Conclusions

 We confirmed EDA lateralization We found small differences in BVP Worst case scenario ML trained models might decrease performance

Reduction in performance for EDA-

Training and testing on different sides

Thank you!

References

[3] Wolfram Boucsein. 2012. Electrodermal activity. Springer Science & Business Media.

[6] Elena Di Lascio, Shkurta Gashi, and Silvia Santini. 2019. Laughter recognition using non-invasive wearable devices. In Proceedings of the 13th EAI International Conference on Pervasive Computing Technologies for Healthcare.

[9] AlbertoGreco,GaetanoValenza,AntonioLanata,EnzoPasqualeScilingo,and Luca Citi. 2015. cvxEDA: A convex optimization approach to electrodermal activity processing. IEEE Transactions on Biomedical Engineering 63, 4 (2015).

[10] Md-Billal Hossain, Youngsun Kong, Hugo F Posada-Quintero, and Ki H Chon. 2022. Comparison of Electrodermal Activity from Multiple Body Locations Based on Standard EDA Indices' Quality and Robustness against Motion Artifact. Sensors 22, 9 (2022).

[11] Chun-Chieh Hsiao, Fang-Wei Hsu, Ren-Guey Lee, and Robert Lin. 2017. Correla- tion analysis of heart rate variability between PPG and ECG for wearable devices in different postures. In 2017 IEEE International Conference on SMC. IEEE.

[12] HassanlsmailFawaz,GermainForestier,JonathanWeber,Lhassaneldoumghar, and Pierre-Alain Muller. 2019. Deep learning for time series classification: a review. Data mining and knowledge discovery 33, 4 (2019).

References

statistics. 2nd Ed (1946).

of cognitive/hemispheric manipulations. Psychophysiology 16, 2 (1979).

electrodermal activity asymmetry. 8, 1 (2016), 62–75

subjects. In 2018 16th BEC. IEEE.

3 (2014), 498–507.

Comas-González. 2021. Correlation analysis of different mea- surement places of galvanic skin response in test groups facing pleasant and unpleasant stimuli. Sensors 21, 12 (2021).

- [16] Ken Kelley and Kristopher J Preacher. 2012. On effect size. Psychological methods 17, 2 (2012).
- [17] Maurice George Kendall et al. 1946. The advanced theory of statistics. The advanced theory of
- [20] J Michael Lacroix and Paul Comper. 1979. Lateralization in the electrodermal system as a function
- [22] Rosalind W Picard, Szymon Fedor, and Yadid Ayzenberg. 2016. Multiple arousal theory and daily-life
- [23] Kristjan Pilt, Sandra Silluta, Merlin Palmar, Deniss Karai, Kalju Meigas, and Margus Viigimaa. 2018. Second derivative photoplethysmographic signal analysis of differences between fingers in healthy
- [26] Andrej A Romanovsky. 2014. Skin temperature: its role in thermoregulation. Acta physiologica 210,
- [29] AndresSanchez-Comas,KåreSynnes,DiegoMolina-Estren,AlexanderTroncoso- Palacio, and Zhoe