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Abstract— Modern wearable devices have enabled continuous
and unobtrusive monitoring of human’s physiological data
such as heart rate. Adequate preprocessing of such data and
application of machine learning enables automatic recognition
of human behavior. In this paper we propose a multi-sensor
approach that leverages physiological data collected using wear-
able sensors to detect stress. Our approach uses a temporal and
sensory fusion methodology to leverage capabilities of multiple
single-sensor models. To evaluate our approach, we use the
SMILE dataset, which has been collected from 45 participants
over 8 days. Our results show that the electrocardiogram and
skin temperature’s model fusion achieves an F1-score of 61.84%
and an accuracy of 56.19% on the test set, which are higher
than baseline classifiers. Our findings show the challenging
nature of stress detection using physiological data and open
up novel opportunities for further research. This paper is part
of the stress detection challenge organized at the EMBC 2022
conference and presents the results of MUSE-USI team.

I. INTRODUCTION

Stress is one of the critical daily defiances that can hamper
the quality of life. People experience stress on a daily basis,
e.g., due to their routine and/or work environment [1]. Stress
can be classified into: positive stress, that can help individual
be geared up and lead to increases in daily performance,
and negative stress, often resulting from long periods of
stressful events, and can lead to a chronic state, that impacts
mental and physical health [2]. Automatic stress detection
techniques have been proposed to help people enhance their
quality of life. Nowadays, such techniques play a crucial role
in managing one’s stress level and reducing health risks [3].

Physiological signals are considered of uttermost impor-
tance for stress state detection, due to the strong correlation
between stress and the autonomic nervous system [2], [4].
Some of the widely used physiological parameters are:
blood volume pulse (BVP), photoplethysmography (PPG),
electrocardioGram (ECG), galvanic skin response (GSR),
also known as electrodermal activity (EDA), and skin tem-
perature (ST), that can be captured in a continuously and
unobtrusively using wearable devices [1].

The objective of this paper is to propose a multi-sensor
fusion method to detect stress, with a focus on the sim-
plicity and explainability of results. The implementation
of our approach is publicly available on GitHub (https:
//github.com/LeonardoAlchieri/MUSE).

II. RELATED WORK

S25tress detection techniques can be grouped in unimodal
and multimodal, as discussed in [5]. Unimodal approaches,
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such as [6], [5], [7], [8], use one sensor modality to estimate
stress. Rashid et al. [6], for instance, propose a hybrid
approach using a convolutional neural network (CNN) to
distinguish between stress and non-stress states using BVP
data collected with wristbands. Greco et al. [7] present a
stress detection approach based on extensive preprocessing
of EDA traces and support vector machine classifier. Au-
thors in [5] investigate the stress detection performance,
using single modality sensor in comparison with combined
modalities, to economise computational requirements. In
[8], an Artificial Intelligence-based fuzzy assisted Petri net
method is proposed for stress detection, based on Heart Rate.
These approaches show the feasibility of using physiological
signals for stress detection, which is the goal of our paper.

Multimodal methods, on the other hand, leverage the
information from two or multiple data sources for stress
detection [9], [10], [11], [12]. Gil et al. [9], for instance,
propose a binary stress detection system that relies on
CNNs, along with inertial signals such as accelerometer
(ACC) and physiological signals such as BVP, EDA, ECG,
electromyogram (EMG) and respiration from two wearable
devices. Wu et al. [11] leverage transfer learning along with
handcrafted and deep features extracted from EDA, PPG and
ST to detect stress. In [12], a real time binary stress detection
system is proposed, where heart rate variability (HRV) and
GSR features, collected using the wrist-worn devices, were
employed, along with a voting and similarity-based fusion
(VSBF) method. In [10], authors utilize unlabelled physio-
logical and behavioral data to support the robustness of the
stress classification problem, in a semi-supervised framework
for stress detection, consisting of data augmentation, auto-
encoders and consistency regularization.

Building upon the work mentioned above, we also leverage
multiple sensors to recognize stress. In contrast, we focus
on understanding the most effective strategy to fusion sensor
data and the overall impact of a sensor on stress detection.

III. DATA ANALYSIS

In this section, we describe the dataset used and our data
analysis approach for stress detection.

A. Dataset

To evaluate our approach, we employ the SMILE (mo-
mentary stress labels with ECG, GSR, and ST data) dataset
presented in [10]. It includes physiological data collected
from 45 healthy participants (39 female, 6 male). The SMILE
dataset was provided as part of the EMBC 2022 Workshop
and Challenge on Detection of Stress and Mental Health
Using Wearable Sensors. Two devices were used to collect
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the physiological data. The first device is Chillband1 (IMEC),
which collects GSR, ST and ACC; and the second device is
Health Patch (IMEC)2, with monitors for ECG and ACC.
Participants reported their stress levels, on a scale from 1
(not stressed) to 7 (extremely stressed), several times during
the day. The self-reported stress score was then assigned to
60 minutes of physiological data before the reported label.

1) Extracted Features: The challenge organizers provided
features, described as follows. The features were extracted
on a window of 5 minutes, with 4 minutes of overlapping,
over the 60 minute interval. This results in a time series
of 60 values. The extracted features of the ECG signal are:
mean heart rate, heart rate cycle, low and high frequency
signal, and their ratios, the ratio between low and very low
frequency, the root mean square error of R-R differences
and the standard deviation of the R-R intervals; the GSR
are: the mean, the signal power of the phasic component,
the response rate, the second difference, the response, the
magnitude, the duration and the area and for ST: the mean,
the standard deviation, the median and the slope of the fitted
linear regression. Thus, in total, the dataset is composed of
2070 labels, for which there are 20 timeseries of length 60,
each corresponding to a different feature. Another test set
of 986 labels was used to benchmark the best method for
the challenge, even though no ground truth was provided
directly.

2) Stress Labels: We binarized the labels by considering
the 1 to 7 self-reported stress score as the stress class and 0 as
the no stress class, as suggested in [10]. With this paradigm,
the dataset was balanced, with about 52% of the data samples
in the positive class (stress) and 48% in the negative class
(not stressed). The dataset authors also provided a set of
features extracted using autoencoders, called deep features.
Since in this work we focused on the explainability of the
approach, we did not use such features.

B. Data Exploration

We explore the presence of missing values in the dataset
and the relationship between stress and extracted features.

1) Missing Values: The dataset contains two types of
missing data. The first group refers to the missing values
of some of the features (27.25% of the cases), which were
imputed by dataset authors with 0s. A smaller case, i.e.,
around 0.05% of the whole dataset, also presented some
instances where, in a whole feature’s sequence, one or more
values were empty. These were solved with a simple average
imputation, over the other points in the affected timeseries.

2) Correlation: We then performed correlation analysis
to investigate the relationship of features to stress labels and
to understand which timestamp has higher association with
the label. To this goal, we explored the correlation using
Pearson’s ρ, Kendall’s τ and Spearman’s ρ [13]. We found
no significant difference between the correlation measures,
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Fig. 1: Pearson’s Correlation coefficient for all of the fea-
tures. The p-value threshold was set to 0.05.

for this reason we report only the first one. Figure 1 shows
the correlation between the features and stress labels. We
observe that the ECG features have the highest correlation
with respect to the stress label, which is in line with results
reported in [14], with some ST features as well. The GSR
features do not show any correlation with the stress label.

C. Classification Procedure

To recognize stress from the physiological data, we tested
different machine learning algorithms. We implemented the
approach using Python and the Scikit-learn library
[15].

1) Timestep Selection: As mentioned in Section III-A, for
each label, and each feature in it, a 60-value timeseries is
given. Most work in the literature, e.g., [16], however, uses
shorter windows; and, as described through saliency maps in
[10], in the given dataset times closer to the labels should be
more important. A decision to reduce the number of time
values was thus taken. As such, instead of using all of the 60
window-averaged values, a shorter window of 10 minutes,
before the label taken, shall be used throughout the current
analysis. We also experimented with other window sizes,
such as, e.g., 30 minutes, and noticed that the 10 minute
window showed the highest results.

2) Classifiers: For all sensors and modalities, i.e., mul-
timodal or unimodal, we implemented a series of "clas-
sical" Machine Learning models: Gaussian Process (GP),
Quadratic Discriminant Analysis (QDA), Support Vector
Machine (SVM), Gaussian Naïve Bayes (NB), K-Nearest
Neighbours (KNN), Decision Tree (DT) and some ensemble
variations, like XGBoost (DT-XG), AdaBoost (DT-Ada) and
Random Forest (RF).

3) Single-sensor models: We first investigated the use
of only one sensor modality to recognize stress, to which
we refer to as unimodal approach. However, since the data
provided consists of 2 dimensions for each label, i.e., each
feature is assigned to a timeseries, a few important consid-
erations had to be made: most traditional machine learning
algorithms cannot deal with multi-dimensional inputs. For
simplicity, single label’s data can be defined as x ∈ RT×F ,
where T is the length of the timeseries and F is the number
of features, e.g., 8 for the ECG data. The approach used to
solve this, which we called feature unravelling, assigned the
ground truth to each of the 10 values in the timeseries; in
this case the number of total labels over which a classifier is
trained is going to be 10 times more; x 7→

{
x′
j ∈ RF

}T

j=1
.

It is assumed fair given the shorter timestep selected: longer
choices, e.g., 60 minutes, might hinder this approach.
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Fig. 2: Overview of our multi-sensor approach.

We then performed feature selection using the mutual
information [17], which measures the mutual dependence
of two variables. We did not observe any performance
improvement when adopting it. Accordingly, we used all the
features in the classification pipeline.

4) Multi-sensor models: We then investigated the use of
multiple sensors to detect stress. The other objective laid out,
in this setting, was to aid the explainability of the detection
model. Based on this, we trained N independent models,
where N is either 2 or 3 sensors, over the "unravelled"
labels; and then used a fusion method to join the N · T
predictions, i.e., the 10-values in the timeseries per sensor.
Figure 2 shows the mutlimodal approach applied in more
detail. Different combinations of ML sensor models, as well
as fusion methods, both ML-based or not, were tested. As
for the fusion modality, it was also tested whether using
probabilities, i.e., instead of a label, the confidence that the
classifier gives for the prediction, or directly label predictions
could give different results. Feature selection was tested here
was well, but without interesting results.

5) Evaluation Procedure: All models were trained and
tested on the "train set", as provided for the competition,
using a 10-fold cross validation procedure, with accu-
racy as performance metric, and standard errors with 68%
confidence. We further evaluated the performance of our
approach on the test set through the automatic platform
CodaLab (https://codalab.org/). This was used
only to confront the best models, identified through the cross
validation procedure, as to avoid introduction of bias, e.g.,
overfitting on the test set [18].

For the model identified as best, through the test set
accuracy, as obtained in Section IV, a description of its
results shall be provided, based on simple explainable AI
practices [19]. Namely, which features, for the two signals,
bear the most importance; and which timestep and sensor,
during the model fusion, is more important. Both were
obtained using an accuracy-based feature permutation [20]
metric. We also calculated a confusion matrix, averaged
over the cross validation folds, to identify how the model
performs.

IV. RESULTS & DISCUSSION

1) Single-sensor models: As mentioned before, different
techniques to deal with the dimensionality of the input data
were tested. Table I shows the accuracy of the classifiers in
comparison to the baseline, using the unravelling technique.

ML Model \ Sensor ECG GSR ST
Gaussian Process 58± 3 40± 3 60± 3

SVM 58± 3 44± 4 59± 4
Naïve Bayes 54± 3 49± 6 57± 5

AdaBoost 54± 3 50± 3 56± 3
KNN 50± 2 49± 1 51± 2
QDA 51± 2 48± 6 59± 4

Uniform Random Baseline 50 ± 2
Biased Random Baseline 52 .75 ± 0 .06

TABLE I: Accuracy (%) for some classifiers and sensors
(single-sensor)

Single-Sensor Model SVM GP
Fusion Technique CV Test CV Test

Average 59± 3 51.52 60± 3 54.67
Gaussian Process 60± 3 52.74 61± 3 52.33

SVM 60± 3 53.14 59± 3 51.42
AdaBoost 59± 3 54.56 60± 3 51.72

QDA 55± 3 54.16 57± 5 56.19
Uniform Random Baseline 50 ± 2
Biased Random Baseline 52 .75 ± 0 .06

TABLE II: Accuracy (%) for combination of ML models and
Fusion Techniques for the ECG+ST multi-sensory approach.
Test accuracy is with two decimals, as provided by CodaLab.
All others are rounded according to their standard error.

The accuracy level is modest for all models, even though
above a random baseline, but nonetheless in line with the
results obtained by [10]. Some classifiers performed better
than others, e.g., SVM and GP, with somewhat consistency
among sensors. As for sensors, ECG and ST have similar
results, while GSR models are not statistically different than
the random baseline, as might have been expected from the
correlation analysis.

2) Multi-sensor models: In the multimodal apprpach, we
used only the GP and SVM models, as they have shown to
perform best for the single sensor experiments. As for the
combination of sensors, while all were tested, meaningful
results were possible only when using ECG and ST together,
aligned with what obtained for the single-sensor approaches.

A decision to use the probability predictions, for the
fusion phase, was taken, as opposed to the label predictions.
During our tests, no discernible difference could be found
between the two, when using cross-validation over the train
set. However, from some performance benchmarks over the
test set, was found that the probability predictions did indeed
perform slightly better, given the same initial conditions.

Table II reports the classification results using the multi-
sensor fusion technique applied on the prediction probabili-
ties. In this case, since the results over the cross-validation
technique were, most of the time, not statistically significant
with one another, the accuracy over the test set, is also
reported. The models used for the ECG and ST features
were always the same together; some tests with different
combinations were constructed, but at best the same results
were obtained, and at worst a decrease in performance. From
this analysis, the best model can be identified as the one
which uses a Gaussian Process for the first phase, over both
ECG and ST features, and a Quadratic Discriminant Analysis
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Fig. 3: Feature importance (over 10-fold cross validation),
for the two models that make up the multi-modal approach,
i.e. SVM for ECG and SVM for ST. Confidence intervals at
68% confidence are also shown.
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for the fusion modality.
3) Best model analysis: Figure 3 presents the feature

importance for the ECG and ST sensor using the Gaussian
Process model. The most important features for the ST are
slope fitted, the average of the signal and the standard devi-
ation. As for the ECG data, all but 3 have high importance,
i.e., the two ratios, between low and high and low and very
low frequencies in HR signal, the high frequency values, the
HR cycle and the standar deviation of the R-R peaks. The
others were not statistically different than 0.

Figure 4a shows the importance of each timestamp for
ECG and ST, from the fusion model. The fusion method,
over the train set, considers the ST data as more important,
for almost all timestep. This means that, according to the
QDA fusion method, the ST-model predictions are more
discriminative. On the other hand, there is no pattern for
what concerns time: this could be either due to the decision
of using a shorter window, and as such all values are already
somewhat important, or the incapacity, on the fusion model
side, in discriminating this. Future works could explore more
in details this factor.

Figure 4b shows the averaged confusion matrix: the model
can compute more accurately true labels (stressed) than
false ones. The approach is capable of detecting one a
person is stressed more often than when it is not: in a real
world application, this behaviour could be desired for such
a system.

V. CONCLUSIONS

In this paper, we proposed an explainable multi-sensor
approach for binary stress detection. The proposed method

relies on handcrafted features from the ECG and ST as
well as classical machine learning algorithms. It achieves
an F1-score of 61.84% and accuracy of 56.19% on the
test set. In this work, we did not utilize the deep features
provided by challenge organizers: investigating the impact of
such features along with deep neural networks on the stress
detection performance is an interesting future direction.
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